题目

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:

[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出:  7
解释:  因为路径 1→3→1→1→1 的总和最小。

思路

思路

  1. 状态定义
设dp[i][j]为走到当前位置的最小路径和
  1. 递推公式
只能向下或向右走,意味着当前格子只能由上边或者左边走过来
dp[i][j] = Min(dp[i-1][j],dp[i][j-1]) + grid[i][j]
  1. 初始化
第一行第n列和第一列第n行为均原数组值
  1. 边界条件
格子有边界,因此当i==0 或j==0时,i-1和j-1会越界
i = 0,j != 0时,dp[i][j] = dp[i][j-1]+grid[i][j]
i !=0,j == 0时,dp[i][j] = dp[i-1][j]+grid[i][j]
i !=0 && j != 0时,dp[i][j] = Min(dp[i-1][j],dp[i][j-1])+grid[i][j]
i == 0 && j == 0时,dp[i][j]=grid[i][j]
  1. 返回值
dp最后一个元素值

代码

cpp代码

#include <stdio.h>

#include <vector>

class Solution {
public:
    int minPathSum(std::vector<std::vector<int> >& grid) {
    	if (grid.size() == 0){
	    	return 0;
	    }
	    int row = grid.size();
    	int column = grid[0].size();
    	std::vector<std::vector<int> > 
						dp(row, std::vector<int>(column, 0));
    	
	    dp[0][0] = grid[0][0];
	    for (int i = 1; i < column; i++){
    		dp[0][i] = dp[0][i-1] + grid[0][i];
    	}
	    for (int i = 1; i < row; i++){
	    	dp[i][0] = dp[i-1][0] + grid[i][0];
    		for (int j = 1; j < column; j++){
		    	dp[i][j] = std::min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
		    }
    	}
	    return dp[row-1][column-1];
    }
};

int main(){
	int test[][3] = {{1,3,1}, {1,5,1}, {4,2,1}};
	std::vector<std::vector<int> > grid;
	for (int i = 0; i < 3; i++){
		grid.push_back(std::vector<int>());
		for (int j = 0; j < 3; j++){
			grid[i].push_back(test[i][j]);
		}
	}
	Solution solve;
	printf("%d\n", solve.minPathSum(grid));	
	return 0;
}

java代码

package minimum_path_sum;

//64.最小路径和
public class Solution {
	
    public int minPathSum(int[][] grid) {
    	//定义dp数组
        int[][] dp = new int[grid.length][grid[0].length];
        for (int i = grid.length - 1; i >= 0; i--) {
            for (int j = grid[0].length - 1; j >= 0; j--) {
                if(i == grid.length - 1 && j != grid[0].length - 1)//如果右边界,那么只能向左走
                    dp[i][j] = grid[i][j] +  dp[i][j + 1];
                else if(j == grid[0].length - 1 && i != grid.length - 1)//如果下边界,那么只能向上走
                    dp[i][j] = grid[i][j] + dp[i + 1][j];
                else if(j != grid[0].length - 1 && i != grid.length - 1)//如果不是边界的情况,则要进行判断最小路径和
                    dp[i][j] = grid[i][j] + Math.min(dp[i + 1][j], dp[i][j + 1]);
                else
                    dp[i][j] = grid[i][j];//从这个元素开始走
            }
        }
        return dp[0][0];
    }
    
    public static void main(String[] args) {
    	int[][] grid = {{1,3,1},{1,5,1},{4,2,1}};
    	Solution solu = new Solution();
    	System.out.println(solu.minPathSum(grid));
	}
}